412 research outputs found

    Potential distribution in deformed ZnO nanowires

    Get PDF
    AbstractThe potential distribution in a deformed ZnO nanowire relies upon its piezoelectric and semiconductive properties. Here we systematically investigate the influence of different parameters on the equilibrium potential distribution. In particular we calculate the electric potential distribution when thermodynamic equilibrium among free charge carriers is achieved for nanowires under different doping concentrations (n or p type), different applied forces, and different geometric configurations. We show that doping concentration is the parameter that mostly affects the magnitude and distribution of the piezoelectric potential

    Evaluation of peak-picking algorithms for protein mass spectrometry

    Get PDF
    Peak picking is an early key step in MS data analysis. We compare three commonly used approaches to peak picking and discuss their merits by means of statistical analysis. Methods investigated encompass signal-to-noise ratio, continuous wavelet transform, and a correlation-based approach using a Gaussian template. Functionality of the three methods is illustrated and discussed in a practical context using a mass spectral data set created with MALDI-TOF technology. Sensitivity and specificity are investigated using a manually defined reference set of peaks. As an additional criterion, the robustness of the three methods is assessed by a perturbation analysis and illustrated using ROC curves

    Aberrant brain network connectivity in pre-symptomatic and manifest Huntington's disease: a systematic review

    Get PDF
    Resting-state functional magnetic resonance imaging (rs-fMRI) has the potential to shed light on the pathophysiological mechanisms of Huntington's disease (HD), paving the way to new therapeutic interventions. A systematic review of the literature was conducted in three online databases according to PRISMA guidelines, using keywords for HD, functional connectivity, and rs-fMRI. We included studies investigating connectivity in pre-symptomatic (pre-HD) and manifest HD gene carriers compared to healthy controls, implementing seed-based connectivity, independent component analysis, regional property and graph analysis approaches. Visual network showed reduced connectivity in manifest HD, while network/areas underpinning motor functions were consistently altered in both manifest HD and pre-HD, showing disease stage-dependent changes. Cognitive networks underlying executive and attentional functions showed divergent anterior-posterior alterations, reflecting possible compensatory mechanisms. The involvement of these networks in pre-HD is still unclear. In conclusion, aberrant connectivity of the sensory-motor network is observed in the early stage of HD while, as pathology spreads, other networks might be affected, such as the visual and executive/attentional networks. Moreover, sensory-motor and executive networks exhibit hyper- and hypo-connectivity patterns following different spatiotemporal trajectories. These findings could help to implement future huntingtin-lowering interventions

    Clinical features, histopathology and differential diagnosis of sarcoidosis

    Get PDF
    Sarcoidosis is a chameleon disease of unknown etiology, characterized by the growth of non-necrotizing and non-caseating granulomas and manifesting with clinical pictures that vary on the basis of the organs that are mainly affected. Lungs and intrathoracic lymph nodes are the sites that are most often involved, but virtually no organ is spared from this disease. Histopathology is distinctive but not pathognomonic, since the findings can be found also in other granulomatous disorders. The knowledge of these findings is important because it could be helpful to differentiate sarcoidosis from the other granulomatous-related diseases. This review aims at illustrating the main clinical and histopathological findings that could help clinicians in their routine clinical practice

    Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease A Systematic Review and Meta-analysis

    Get PDF
    IMPORTANCE: The clinical utility of stress cardiovascular magnetic resonance imaging (CMR) in stable chest pain is still debated, and the low-risk period for adverse cardiovascular (CV) events after a negative test result is unknown.OBJECTIVE: To provide contemporary quantitative data synthesis of the diagnostic accuracy and prognostic value of stress CMR in stable chest pain.DATA SOURCES: PubMed and Embase databases, the Cochrane Database of Systematic Reviews, PROSPERO, and the ClinicalTrials.gov registry were searched for potentially relevant articles from January 1, 2000, through December 31, 2021.STUDY SELECTION: Selected studies evaluated CMR and reported estimates of diagnostic accuracy and/or raw data of adverse CV events for participants with either positive or negative stress CMR results. Prespecified combinations of keywords related to the diagnostic accuracy and prognostic value of stress CMR were used. A total of 3144 records were evaluated for title and abstract; of those, 235 articles were included in the full-text assessment of eligibility. After exclusions, 64 studies (74 470 total patients) published from October 29, 2002, through October 19, 2021, were included.DATA EXTRACTION AND SYNTHESIS: This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses.MAIN OUTCOMES AND MEASURES: Diagnostic odds ratios (DORs), sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), odds ratio (OR), and annualized event rate (AER) for all-cause death, CV death, and major adverse cardiovascular events (MACEs) defined as the composite of myocardial infarction and CV death.RESULTS: A total of 33 diagnostic studies pooling 7814 individuals and 31 prognostic studies pooling 67 080 individuals (mean [SD] follow-up, 3.5 [2.1] years; range, 0.9-8.8 years; 381 357 person-years) were identified. Stress CMR yielded a DOR of 26.4 (95% CI, 10.6-65.9), a sensitivity of 81% (95% CI, 68%-89%), a specificity of 86% (95% CI, 75%-93%), and an AUROC of 0.84 (95% CI, 0.77-0.89) for the detection of functionally obstructive coronary artery disease. In the subgroup analysis, stress CMR yielded higher diagnostic accuracy in the setting of suspected coronary artery disease (DOR, 53.4; 95% CI, 27.7-103.0) or when using 3-T imaging (DOR, 33.2; 95% CI, 19.9-55.4). The presence of stress-inducible ischemia was associated with higher all-cause mortality (OR, 1.97; 95% CI, 1.69-2.31), CV mortality (OR, 6.40; 95% CI, 4.48-9.14), and MACEs (OR, 5.33; 95% CI, 4.04-7.04). The presence of late gadolinium enhancement (LGE) was associated with higher all-cause mortality (OR, 2.22; 95% CI, 1.99-2.47), CV mortality (OR, 6.03; 95% CI, 2.76-13.13), and increased risk of MACEs (OR, 5.42; 95% CI, 3.42-8.60). After a negative test result, pooled AERs for CV death were less than 1.0%.CONCLUSION AND RELEVANCE: In this study, stress CMR yielded high diagnostic accuracy and delivered robust prognostication, particularly when 3-T scanners were used. While inducible myocardial ischemia and LGE were associated with higher mortality and risk of MACEs, normal stress CMR results were associated with a lower risk of MACEs for at least 3.5 years

    Role of imaging in rare COVID-19 vaccine multiorgan complications

    Get PDF
    As of September 18th, 2021, global casualties due to COVID-19 infections approach 200 million, several COVID-19 vaccines have been authorized to prevent COVID-19 infection and help mitigate the spread of the virus. Despite the vast majority having safely received vaccination against SARS-COV-2, the rare complications following COVID-19 vaccination have often been life-threatening or fatal. The mechanisms underlying (multi) organ complications are associated with COVID-19, either through direct viral damage or from host immune response (i.e., cytokine storm). The purpose of this manuscript is to review the role of imaging in identifying and elucidating multiorgan complications following SARS-COV-2 vaccination—making clear that, in any case, they represent a minute fraction of those in the general population who have been vaccinated. The authors are both staunch supporters of COVID-19 vaccination and vaccinated themselves as well

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections

    Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset

    Get PDF
    Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics

    Omics analysis of educated platelets in cancer and benign disease of the pancreas

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is traditionally associated with thrombocy-tosis/hypercoagulation and novel insights on platelet-PDAC “dangerous liaisons” are warranted. Here we performed an integrative omics study investigating the biological processes of mRNAs and expressed miRNAs, as well as proteins in PDAC blood platelets, using benign disease as a refer-ence for inflammatory noise. Gene ontology mining revealed enrichment of RNA splicing, mRNA processing and translation initiation in miRNAs and proteins but depletion in RNA transcripts. Remarkably, correlation analyses revealed a negative regulation on SPARC transcription by isomiRs involved in cancer signaling, suggesting a specific ”education” in PDAC platelets. Platelets of benign patients were enriched for non-templated additions of G nucleotides (#ntaG) miRNAs, while PDAC presented length variation on 3′ (lv3p) as the most frequent modification on miRNAs. Additionally, we provided an actionable repertoire of PDAC and benign platelet-ome to be exploited for future studies. In conclusion, our data show that platelets change their biological repertoire in patients with PDAC, through dysregulation of miRNAs and splicing factors, supporting the presence of de novo protein machinery that can “educate” the platelet. These novel findings could be further exploited for innovative liquid biopsies platforms as well as possible therapeutic targets

    Minor and Unsystematic Cortical Topographic Changes of Attention Correlates between Modalities

    Get PDF
    In this study we analyzed the topography of induced cortical oscillations in 20 healthy individuals performing simple attention tasks. We were interested in qualitatively replicating our recent findings on the localization of attention-induced beta bands during a visual task [1], and verifying whether significant topographic changes would follow the change of attention to the auditory modality. We computed corrected latency averaging of each induced frequency bands, and modeled their generators by current density reconstruction with Lp-norm minimization. We quantified topographic similarity between conditions by an analysis of correlations, whereas the inter-modality significant differences in attention correlates were illustrated in each individual case. We replicated the qualitative result of highly idiosyncratic topography of attention-related activity to individuals, manifested both in the beta bands, and previously studied slow potential distributions [2]. Visual inspection of both scalp potentials and distribution of cortical currents showed minor changes in attention-related bands with respect to modality, as compared to the theta and delta bands, known to be major contributors to the sensory-related potentials. Quantitative results agreed with visual inspection, supporting to the conclusion that attention-related activity does not change much between modalities, and whatever individual changes do occur, they are not systematic in cortical localization across subjects. We discuss our results, combined with results from other studies that present individual data, with respect to the function of cortical association areas
    corecore